A Year of Approximate Inference: Review of the NIPS 2015 Workshop

[dropcap]Probabilistic[/dropcap] inference lies no longer at the fringe. The importance of how we connect our observed data to the assumptions made by our statistical models—the task of inference—was a central part of this year's Neural Information Processing Systems (NIPS) conference: Zoubin Ghahramani's opening keynote … Continue reading A Year of Approximate Inference: Review of the NIPS 2015 Workshop

Variational Inference: Tricks of the Trade

The NIPS 2014 Workshop on Advances in Variational Inference was abuzz with new methods and ideas for scalable approximate inference. The concluding event of the workshop was a lively debate with David Blei, Neil Lawrence, Zoubin Ghahramani, Shinichi Nakajima and Matthias Seeger on the history, trends and open questions in variational inference. One of the questions posed to our panel and audience was: 'what are your variational inference tricks-of-the-trade?'

My current best-practice at present includes: stochastic approximation, Monte Carlo estimation, amortised inference and powerful software tools. But this is a though-provoking question that has has motivated me think in some more detail through my current variational inference tricks-of-the-trade, which are:
Continue reading "Variational Inference: Tricks of the Trade"